Dengue hemorrhagic fever with special emphasis on immunopathogenesis

Ichiro Kurane*

Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan

Received 8 December 2006

Abstract

Dengue virus infections are a serious cause of morbidity and mortality in most tropical and subtropical areas of the world; Southeast and South Asia, Central and South America, and the Caribbean. Dengue virus infection can be asymptomatic or causes two forms of illness, dengue fever (DF) and dengue hemorrhagic fever (DHF), which is the severe form of dengue illness and often fatal. Pathogenesis of DHF has been analyzed, and two mechanisms are considered to be responsible. These include dengue serotype cross-reactive immune responses and virulence of the virus. The immunopathological mechanisms include a complex series of immune responses. Rapid increase in the levels of cytokines, especially TNF-α, and chemical mediators play a key role in inducing unique clinical manifestations of DHF such as plasma leakage, shock, and hemorrhagic manifestations. It is understood that the process is initiated by infection with a virulent dengue virus, often in the presence of antibodies that enhance dengue virus infection in secondary infection, and then triggered by rapidly elevated cytokines and chemical mediators that were produced by intense immune activation. However, complete understanding of the entire pathological mechanism is far from complete, and further studies are still needed.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Dengue virus; Dengue fever; Dengue hemorrhagic fever; Immunopathogenesis

*Tel./fax: +81 3 5285 1169.
E-mail address: kurane@nih.go.jp

0147-9571/S - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cimid.2007.05.010
Résumé

Les infections de la fièvre dengue sont une cause sérieuse de morbidité et de mortalité dans la plupart des zones tropicales et subtropicales du monde, l’Asie du sud-est, l’Asie du sud, l’Amérique centrale et du sud, et les Caraïbes. L’infection du virus de la dengue peut être ou asymptomatique, ou causer deux formes de maladies, la fièvre dengue et la fièvre dengue hémorragique (DHF), forme grave de la maladie de la dengue qui peut être mortelle. L’analyse de la pathogénie de la DHF a montré deux mécanismes qui sont considérés responsables. Sont inclus dans ces derniers les réactions croisées des réponses immunitaires entre sérotypes de dengue différents, et la virulence du virus. Les mécanismes immunopathologiques comprennent une série complexe de réponses immunitaires. Une augmentation rapide des niveaux de cytokines, en particulier la TNF, et les facteurs médiateurs jouent un rôle clef dans l’induction de manifestations cliniques spécifiques de la DHF comme la perte de plasma, les manifestations hémorragiques et de choc. Il est entendu que le processus est initié par une infection d’un virus de dengue virulent, parfois en présence d’anticorps qui augmentent l’infection du virus de la dengue en infection secondaire, puis déclenché par l’augmentation rapide de cytokines et de médiateurs chimiques produits par une activation immunitaire intense. Toutefois, le mécanisme pathologique est loin d’être entièrement compris, et des études ultérieures sont nécessaires.

© 2007 Elsevier Ltd. All rights reserved.

Mots clés: Virus de la dengue; Fièvre dengue; Fièvre dengue hémorragique; Immunopathogénie

1. Dengue viruses

Dengue viruses are transmitted to humans by infected mosquitoes, mainly Aedes aegypti and Aedes albopictus [1]. Humans are natural hosts of dengue viruses, and dengue viruses are maintained between mosquitoes and humans in nature. Dengue viruses belong to the family Flaviviridae, the genus Flavivirus. There are four serotypes, dengue virus types 1, 2, 3, and 4 [2]. Although dengue virus types 1, 2, 3, and 4 are called four serotypes of dengue virus, it is generally accepted that these four dengue viruses, dengue virus types 1, 2, 3, and 4, are antigenically related different species.

The genome of dengue viruses is a single-stranded RNA nearly 11 kb in length. It is plus-stranded and infectious [3]. The uninterrupted open reading frame codes for three structural proteins, the capsid (C) protein, preM, the precursor to the membrane (M) protein, the envelope (E) protein, and seven non-structural proteins, the NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 [3]. Dengue virion has a spherical shape with 40–50 nm in diameter [4]. The envelope is a lipid bilayer containing two envelope-associated proteins: the E and M proteins. The nucleocapsid is about 30 nm in diameter and covered by envelope.

The E protein is glycosilated and responsible for attachment to the cellular receptors and fusion with cell membrane. The E protein contains the main epitopes recognized by neutralizing antibodies. These epitopes are dengue virus-specific and cross-reactive for other faviviruses. It is understood that neutralizing antibody plays
a key role in protective immunity against dengue viruses. Thus, the E protein plays the most important role in induction of protective immunity. The role of cellular immunity in the protection against dengue viruses has been analyzed, but has not been completely understood yet.

2. Dengue fever (DF) and dengue hemorrhagic fever (DHF); two types of clinical manifestation of dengue virus infection

Dengue virus infection can be asymptomatic or causes two forms of illness, DF and DHF [4,5] (Table 1), although the majority of dengue virus infections are asymptomatic. DF is a self-limited febrile illness [4,5]. After an incubation period of 2–7 days, a sudden onset of fever occurs. The fever is usually accompanied with retro-orbital or frontal headache. Myalgia and bone pain occur soon after the onset of fever. A transient macular rash that blanches under pressure, nausea, vomiting, lymphadenopathy, and taste aberrations can develop. These symptoms are accompanied by leucopenia and variable degrees of thrombocytopenia. One to 2 days after defervescence, a generalized morbilliform maculopapular rash appears. The rash spares palms and soles. Patients usually recover from the symptoms without complications about a week after the onset of disease.

Some patients infected with dengue virus demonstrate plasma leakage into interstitial spaces, thrombocytopenia, and also hemorrhagic manifestation [5,6]. This severe life-threatening syndrome is called DHF. The incubation period of DHF is similar to that of DF. Illness starts with fever, malaise, vomiting, headache, anorexia, and cough. Rapid clinical deterioration and collapse follows after 2–5 days. In the second phase, the patients demonstrate cold clammy extremities, warm trunk, flushed face, restlessness, irritability, middle gastric pain, and may progress to a rapid weak pulse, hypotension, and narrow pulse pressure. The crisis lasts for 24–36 h and the patients recover rapidly once convalescent starts. The hematological manifestations include an increase in hematocrit, thrombocytopenia, a prolonged bleeding time, and an increased prothrombin time. The temperature returns to normal when capillary leakage occurs. The occurrence of capillary leakage differentiates DHF from DF. The World Health Organization (WHO) categorizes DHF into four grades, from less severe (grade 1) to severe (grade 4). Grades 3 and 4, in which plasma leakage is so profound that shock occurs, are also referred to as dengue shock syndrome (DSS) [5].

3. Epidemiological features of DF and DHF

Dengue virus infections are a serious cause of morbidity and mortality in most tropical and subtropical areas of the world: mainly Southeast and South Asia, Central and South America, and the Caribbean [1,4] (Fig. 1). There are approximately 2.5 billion people at risk in the world for infection with dengue viruses. Nearly 100 countries and areas have a risk for domestic dengue virus infections. Dengue cases are
Table 1
Case definition for dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS) (from Ref. [5])

<table>
<thead>
<tr>
<th>Dengue fever (DF)</th>
<th>Dengue hemorrhagic fever (DHF)</th>
<th>Dengue shock syndrome (DSS) (DHF grades 3 and 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probable—an acute febrile illness with two or more the following manifestations:</td>
<td>Fever, or history of acute fever, lasting 2–7 days, occasionally biphasic.</td>
<td>All of the above four criteria for DHF must be present, plus evidence of circulatory failure manifested by:</td>
</tr>
<tr>
<td>○ Headache</td>
<td>○ Hemorrhagic tendencies, evidenced by at least one of the following:</td>
<td>○ rapid and weak pulse, and</td>
</tr>
<tr>
<td>○ Retro-orbital pain</td>
<td>○ a positive tourniquet test</td>
<td>○ narrow pulse pressure (<20 mmHg(2.7 kPa))</td>
</tr>
<tr>
<td>○ Myalgia</td>
<td>○ petechiae, ecchymoses or purpura</td>
<td>or manifested by:</td>
</tr>
<tr>
<td>○ Arthralgia</td>
<td>○ bleeding from the mucosa, gastrointestinal tract, injection sites or other locations</td>
<td>○ hypotension for age, and</td>
</tr>
<tr>
<td>○ Rash</td>
<td>○ hematemesis or melaena</td>
<td>○ cold, clammy skin and restlessness.</td>
</tr>
<tr>
<td>○ Hemorrhagic manifestation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>○ Leucopenia and</td>
<td>○ Thrombocytopenia (100,000/mm³ or less).</td>
<td></td>
</tr>
<tr>
<td>○ Supportive serology (a reciprocal hemagglutination-inhibition antibody titer ≥1280, a comparable IgG enzyme-linked immunosorbent assay titer or a positive IgM antibody test on a late acute or convalescent serum specimen); or</td>
<td>○ Evidence of plasma leakage due to increased vascular permeability, manifested by at least one of the following:</td>
<td></td>
</tr>
<tr>
<td>○ Occurrence at the same location and time as other confirmed cases of dengue fever.</td>
<td>○ a rise in the hematocrit equal to or greater than 20% above average for age, sex and population;</td>
<td>○ signs of plasma leakage such as pleural effusion, ascites and hypoproteinaemia.</td>
</tr>
<tr>
<td>Confirmed—a case confirmed by laboratory criteria (see below).</td>
<td>○ a drop in the hematocrit following volume-replacement treatment equal to or greater than 20% of baselines;</td>
<td></td>
</tr>
<tr>
<td>○ isolation of the dengue virus from serum or autopsy samples; or</td>
<td>○ signs of plasma leakage such as pleural effusion, ascites and hypoproteinaemia.</td>
<td></td>
</tr>
<tr>
<td>○ demonstration of fourfold or greater change in reciprocal IgG or IgM antibody titers to one or more dengue virus antigens in paired serum samples; or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>○ demonstration of dengue virus antigen in autopsy tissue, serum or cerebrospinal fluid samples by immunohistochemistry, immunofluorescence, or ELISA; or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>○ detection of dengue virus genomic sequences in autopsy tissue or cerebrospinal fluid samples by polymerase chain reaction (PCR).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

estimated to occur in up to 100 million population annually. A total of approximately 500,000 cases of DHF occur annually, and the case fatality ratio is 1–5%. Thus, dengue presents one of the most serious human infectious diseases. The areas where dengue
virus infection is a serious public health problem have been expanding, and the number of DHF cases has been recently increasing.

4. Pathogenesis of DHF

Major manifestations of DHF include (i) plasma leakage through elevated vascular permeability, (ii) hemorrhage, and (iii) thrombocytopenia. Some of the patients infected with dengue virus develop DHF, while most with symptomatic infections end up as DF. The pathogenesis of DHF has been explained by two theories. One theory is based on the virulence of infecting dengue viruses; virulent dengue virus strains cause DHF, while avirulent dengue virus strains cause DF. The other is based on immunopathogenesis. This theory suggests that DHF is mediated by host immune responses including dengue virus-cross-reactive antibodies that augment infections. These two theories have been considered as opposing each other for a long period of time. However, it appears that they represent different aspects of the pathogenesis of DHF.

5. Role of non-neutralizing antibodies in the pathogenesis of DHF

Epidemiologic data have suggested that DHF is mediated by host immune responses. The studies done in Thailand demonstrated that up to 99% of DHF cases
had heterotypic antibody to the serotype of dengue virus that caused DHF. These DHF cases were divided into two groups. Nearly 90% of them were children who were older than 1 year and in a secondary infection with a serotype of dengue virus different from that which caused the primary infection. The other 10% were less than 1 year old and undergoing a primary dengue virus infection [7,8]. They were infants who were born to the mothers with dengue virus antibodies.

In dengue epidemic of dengue virus type 2 in Cuba in 1981, most DHF cases were those who had acquired dengue antibodies in the previous epidemics by dengue virus type 1 in 1977 and 1978 [9]. These results suggest that the presence of heterotypic dengue virus antibodies before secondary infections is a risk factor for developing DHF.

Cross-reactive antibodies that lack neutralizing activity are induced in the primary infection. In secondary infection, dengue virus and non-neutralizing antibodies form virus–antibody complexes. Virus–antibody complexes bind to Fcγ receptors on target cells and result in enhancement of dengue virus infection. The non-neutralizing, cross-reactive antibodies thus markedly augment dengue virus infection of Fcγ receptor-positive cells [10]. This phenomenon is called antibody-dependent enhancement (ADE).

Infants born to the mothers develop DHF in the primary infections. The levels of maternal dengue virus antibodies in the infants needed to decline to the levels that can enhance dengue virus infection and lead to DHF [11,12]. These observations are consistent with the idea that enhancing antibodies increase the number of dengue virus-infected cells and the levels of viremia and lead to DHF.

6. Virulence of viruses as a cause of DHF

Although DHF occurs more frequently in secondary infection than in primary infection, DHF also occurs in primary infection. This suggests that virulence of the virus contributes to the development of DHF. It has been assumed that virulent dengue virus strains cause DHF, while avirulent dengue virus strains cause DF. There are multiple genotypes in each of four dengue viruses.

The introduction of the Southeast Asian genotype coincided with the appearance of DHF in different countries in the Americas, while the original American genotype was only associated with DF, but not with DHF [13,14]. Other epidemiological studies demonstrated that there were no DHF cases reported in Peru where the Southeast Asian genotype of dengue virus type 2 was not introduced [15].

Various groups have attempted to define the molecular determinants of dengue virus virulence. It was reported that the determinants for virulence resided at the amino acid 390 of the E protein, in the 5′ non-translated region and in the upstream 300 nucleotides of the 3′ non-translated region [16]. The other group demonstrated non-synonymous amino acid replacements in the preM, NS1, NS2a, NS3, and NS5 by analyzing multiple strains of dengue virus type 2 [17,18].

The studies done in Thailand demonstrated that viral loads in peripheral blood are higher in patients who develop DHF than in those with DF [19]. However, it is not
determined why and how higher levels of viremia lead to the pathology and symptoms seen in DHF. The virulence of dengue virus has been determined by the characteristics in vitro: plaque size, virus titers, etc. However, because of the absence of animal models, it is difficult to confirm that some “virulent” strains actually induce DHF in vivo. Further studies are needed to elucidate the molecular bases underlying these possible different phenotypes.

7. Role of cytokines in the pathogenesis of DHF

A series of studies have suggested that plasma leakage, which differentiates DHF from DF, is caused by malfunction of vascular endothelial cells induced by cytokines or chemical mediators rather than by destruction of the small vessels [20–22]. Plasma levels of various cytokines are significantly higher in DHF than in DF. The cytokines elevated in patients with DHF include TNF-α, IL-2, IL-6, IL-8, IL-10, IL-12, and IFN-γ. The levels of IL-8 and MCP-1 are also elevated in the pleural effusion from DHF patients [23]. However, it is not clearly understood how these cytokines are induced and how these cytokines cause malfunction of vascular endothelial cells and lead to plasma leakage.

Of these cytokines, TNF-α has attracted attention because of its well-known activity in inducing plasma leakage. It was reported that dengue virus-infected monocytes and endothelial cells produce some of multiple cytokines including TNF-α [21,22]. It was also reported that monocytes produce TNF-α when they were infected with dengue virus in the presence of enhancing antibody and that the produced TNF-α induces plasma leakage in an in vitro experimental system using endothelial cells [24]. It has also been reported that a mast cell/basophile line infected with dengue viruses can produce IL-1 and IL-6 [25]. Some of the cytokines, IFN-γ, IL-2, and TNF-α, were also produced by virus-specific T lymphocytes upon activation [21,26]. It is likely that both dengue-virus-infected monocytes and activated specific T lymphocytes are responsible for increased levels of cytokines in DHF.

8. Complement activation in patients with DHF

Activation of complement is another important clinical manifestations in DHF. It was reported that the levels of C3a and C5a, complement activation products, are correlated with the severity of DHF and the levels of C3a and C5a reached the peak at the time of defervescence when plasma leakage becomes most apparent [27]. This is consistent with the assumption that complement activation is also responsible for the pathogenesis of DHF.

The mechanism of complement activation in DHF is not completely understood. Circulating immune complexes are present in the DHF patients, and it has been assumed that the complement is activated by the immune complexes [27,28]. High levels of secreted NS1 and pre-existing cross-reactive antibody may also mediate
complement activation. Further, it was reported that dengue virus-infected monocytes and endothelial cells activate complement via classical and alternative pathways [23]. It is likely that complement is activated by various mechanisms in DHF patients, and that complement activation also contribute to the pathogenesis of various clinical features, especially plasma leakage.

9. Further researches

There have been many studies that target the pathogenesis of DHF (Table 2). However, our understanding is not complete yet. In this section some questions and projects that remain to be addressed toward a fuller understanding of DHF pathogenesis are listed.

9.1. Animal models

Natural host of dengue viruses are humans. Lack of animal models is one of the biggest factors that prohibited the analysis of the pathogenesis of DHF. Development of animal models has been attempted using various types of animal models by many groups. Monkeys can be infected with dengue viruses, but do not develop symptoms, except for limited success. Murine models for dengue virus infections have been reported by several groups. A variety of strains of mice were used including SCID mice reconstituted with human peripheral blood mononuclear cells (PBMC), and interferon alpha and beta receptor-deficient mice. These mice showed limited success, but did not demonstrate increased vascular permeability. Promising murine model was recently reported by Shresta et al. [29]. Mouse-adapted dengue virus strains were used and the mice showed increased vascular permeability.
which is one of the characteristic clinical features in DHF patients. The mice died without the encephalitic symptoms. They also demonstrated that TNF-α is responsible for early death of mice. This study suggests that development of small animal model for elucidating the pathogenesis of DHF will be possible. Further studies are needed to develop new animal models for elucidating the pathogenesis of dengue virus infection.

9.2. Progress of dengue viral infection in vivo after mosquito bite

Although this may be the most fundamental question in infectious diseases, the progress of dengue virus infection after introduction of dengue virus in vivo is not well understood. It was reported that the monocytes, macrophages, and the other cells of reticuloendothelial origin are the cells that mainly support dengue virus infections [30,31]. It was also reported that dendritic cells, namely Langerhans cells, and dermal and interstitial dendritic cells, are more permissive for dengue virus than monocytes and macrophages, using DC-SIGN as a receptor for dengue viruses [32]. Recently, it was reported that vascular endothelial cells and hepatocytes were infected with dengue virus in vivo in patients with DHF [33,34]. Although there were reports that fibroblasts and B cells can be also infected with dengue viruses in vitro [35–37], whether these cells were also infected with in vivo is not known.

Based on these data, it is likely that multiple cell types including dendritic cells and monocytes/macrophages and hepatocytes are the cells that mainly support dengue virus infection in vivo. Main target organs of dengue virus infections are not known. Liver appears to play a role in dengue virus propagation in vivo; however, whether liver is the only main organ of dengue virus propagation has not been defined yet.

Further, the questions unanswered are (i) how do the viruses actually spread? (ii) which organs and cells contribute to the viremia? and (iii) how important is the infection of vascular endothelial cells by dengue virus in the pathogenesis of DHF; especially plasma leakage and hemorrhagic manifestations.

9.3. Vaccine development

There are no dengue vaccines available for human use. At this point various types of dengue vaccines are under development [38,39]. They include live attenuated vaccines, chimeric vaccines that consist of yellow fever 17 D strain (vaccine strain) as a backbone and prM and E genes of dengue viruses, other type of chimeric vaccines that consists of attenuated dengue virus and prM and E genes of other dengue viruses serotypes. With any types of these live attenuated or chimeric vaccines, the final product will be tetravalent vaccines, which induce protective immunity against homologous serotypes. These vaccine candidates finished pre-clinical studies and in the phase I and phase II studies [38,39].

Although protective immunity against dengue viruses is not completely elucidated, it is generally agreed that neutralizing antibodies play most important roles in protection against dengue virus infections. Especially, neutralizing antibodies against homologous dengue serotypes are considered to be the most important protective
immunity. This concept is based on the epidemiological data that humans develop life-long protection against homologous dengue virus serotype, while protection against heterologous serotypes is short lived. The role of cellular immunity in the protection and recovery from dengue virus infection has been studied; however, further studies are needed for complete understanding.

9.4. Dengue viral phenotypes and cytokines

There are differences in the growth capacity in vitro among dengue virus isolates. The strains that were isolated from patients with DHF or DSS are often called “virulent strains”. However, their virulence cannot be confirmed because of lack of adequate animal models. It has not been determined whether some strains are virulent because they grow well in vivo with or without enhancing antibodies, because they are highly cytopathic, or because they induce high levels of cytokines. It has been reported that viral titers are higher in DHF patients than in DF patients. However, it has not been determined why higher viral titers lead to unique clinical manifestations of DHS: plasma leakage, hemorrhagic manifestations, etc.

On the other hand, many studies showed that cytokines and/or chemical mediators contribute to the pathogenesis of DHF. It has been, however, difficult to attribute the pathogenesis of DHF to the sole cytokine. Rather it is more likely that the multiple cytokines function in the synergistic and additive fashion, and induce the pathology and the clinical manifestations of DHF. If it is the case, elucidation of the pathological mechanism of DHF may be quite difficult. Irrespective of this assumption, further studies are still needed for better understanding.

10. Final remark

DF/DHF is one of the most important infectious diseases in tropical and subtropical countries. The areas where DF and DHF are a serious health concern have been expanding, and the number of DHF patients has been increasing. New findings of dengue viruses are accumulating, and a dengue vaccine may be available in the near future. However, understanding of the pathogenesis of DHF still remains a challenge. Better understanding of DHF pathogenesis will lead us to developing better strategies to the treatment and the prevention of DHF.

References

